Change-point analysis of neuron spike train data.
نویسندگان
چکیده
In many medical experiments, data are collected across time, over a number of similar trials, or over a number of experimental units. As is the case of neuron spike train studies, these data may be in the form of counts of events per unit of time. These counts may be correlated within each trial. It is often of interest to know if the introduction of an intervention, such as the application of a stimulus, affects the distribution of the counts over the course of the experiment. In such investigations, each trial generates a sequence of data that may or may not contain a change in distribution at some point in time. Each sequence of integer counts can be viewed as arising from a Poisson process and are therefore independently distributed or as an integer-valued time series that allows for correlations between these counts. The main aim of this paper is to show how the ensemble of sample paths may be used to make inference about the distribution of the instantaneous times of change in a given population. This will be accomplished using a Bayesian hierarchical model for these change-points in time. A bonus of these models is they also allow for inference about the probability of a change in each unit and the magnitude of the effects, if any. The use of such change-point models on integer-valued time series is illustrated on neuron spike train data, although the methods can be applied to other situations where integer-valued processes arise.
منابع مشابه
Model-Based Decoding, Information Estimation, and Change-Point Detection Techniques for Multineuron Spike Trains
One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models,...
متن کاملModel-based decoding, information estimation, and change- point detection in multi-neuron spike trains
Understanding how stimulus information is encoded in spike trains is a central problem in computational neuroscience. Decoding methods provide an important tool for addressing this problem, by allowing us to explicitly read out the information contained in spike responses. Here we introduce several decoding methods based on point-process neural encoding models (i.e. “forward” models that predic...
متن کاملInferring oscillatory modulation in neural spike trains
Oscillations are observed at various frequency bands in continuous-valued neural recordings like the electroencephalogram (EEG) and local field potential (LFP) in bulk brain matter, and analysis of spike-field coherence reveals that spiking of single neurons often occurs at certain phases of the global oscillation. Oscillatory modulation has been examined in relation to continuous-valued oscill...
متن کاملInnovative Methodology Fast Nonnegative Deconvolution for Spike Train Inference From Population Calcium Imaging
Vogelstein JT, Packer AM, Machado TA, Sippy T, Babadi B, Yuste R, Paninski L. Fast nonnegative deconvolution for spike train inference from population calcium imaging. J Neurophysiol 104: 3691–3704, 2010. First published June 16, 2010; doi:10.1152/jn.01073.2009. Fluorescent calcium indicators are becoming increasingly popular as a means for observing the spiking activity of large neuronal popul...
متن کاملChange-point detection in neuronal spike train activity
Animals respond to changes in their environment based on the information encoded in neuronal spike activity. One key issue is to determine how quickly and reliably the system can detect that a behaviorally relevant change has taken place. What are the neural mechanisms and computational principles that allow fast, reliable detection of changes in spike activity? Here we present an optimal stati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 54 1 شماره
صفحات -
تاریخ انتشار 1998